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Modeling structural variability is critical for understanding

protein function and for modeling reliable targets for in silico

docking experiments. Because of the time-intensive nature of

manual X-ray crystallographic refinement, automated refine-

ment methods that thoroughly explore conformational space

are essential for the systematic construction of structurally

variable models. Using five proteins spanning resolutions of

1.0–2.8 Å, it is demonstrated how torsion-angle sampling of

backbone and side-chain libraries with filtering against both

the chemical energy, using a modern effective potential, and

the electron density, coupled with minimization of a

reciprocal-space X-ray target function, can generate multiple

structurally variable models which fit the X-ray data well.

Torsion-angle sampling as implemented in the Protein Local

Optimization Program (PLOP) has been used in this work.

Models with the lowest Rfree values are obtained when

electrostatic and implicit solvation terms are included in the

effective potential. HIV-1 protease, calmodulin and SUMO-

conjugating enzyme illustrate how variability in the ensemble

of structures captures structural variability that is observed

across multiple crystal structures and is linked to functional

flexibility at hinge regions and binding interfaces. An

ensemble-refinement procedure is proposed to differentiate

between variability that is a consequence of physical con-

formational heterogeneity and that which reflects uncertainty

in the atomic coordinates.
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1. Introduction

Structural flexibility and dynamics both play an important role

in protein function. Local atomic fluctuations and large-scale

conformational changes affect the ability of macromolecules

to bind ligands, recognize protein surfaces and catalyze reac-

tions (Koshland, 1963; Gutteridge & Thornton, 2005; Karplus

et al., 2005; Alberts et al., 2002). Effectively modeling struc-

tural variability is a crucial step towards understanding the

interplay between protein function, flexibility and dynamics

and for developing reliable targets for in silico docking

experiments. Recent studies have demonstrated the increased

predictive power of structure-based drug-design strategies

that account for structural variability (Bonvin, 2006; Ehrlich et

al., 2005; Halperin et al., 2002; Sherman et al., 2006).

In traditional protein crystallography, a single three-

dimensional model is generally used to represent a dynamic

ensemble of structures. Atomic fluctuations are encapsulated

in the isotropic or anisotropic B-factor terms (Willis & Pryor,

1975; Kuriyan et al., 1986; Westhof et al., 1986). In related

approaches, such as translation, libration and screw-rotation

(TLS) refinement (Winn et al., 2001) and normal-mode

analysis (NMA; Kidera & Go, 1990; Chen et al., 2007; Poon et



al., 2007), collective displacement variables are used to

describe anisotropic and correlated atomic fluctuations. Side-

chain flexibility tends to be modeled as an average confor-

mation with elevated B factors or, less frequently, as multiple

coordinates for a given residue with scaled occupancy factors

(Stec et al., 1995; Smith et al., 1986; Rejto & Freer, 1996). In a

recent letter to Nature Structural and Molecular Biology,

Furnham and coworkers contend that these single-conformer

models provide little information about the uncertainty in the

model or the heterogeneity that is present in the crystal

(Furnham et al., 2006). These authors suggest that ensembles

of models would be more appropriate representations of a

macromolecule and that these ensembles would provide end-

users with information about the range of structures that

should be considered in subsequent analyses of the models.

More extensive descriptions of conformational variability

have been achieved by ensemble refinement, in which multiple

complete structures are refined simultaneously (Rader &

Agard, 1997; Burling & Brünger, 1994; Kuriyan et al., 1991). In

this approach, each conformer is generally assigned a frac-

tional occupancy equal to the reciprocal of the number of

copies and, while each individual copy is not necessarily a

good model of the macromolecule, the ensemble is in good

agreement with the X-ray reflection data. A recent study using

synthetic data has demonstrated that ensemble refinement of

an ensemble of conformers can substantially reduce the Rfree

values and improve the estimation of the magnitude and

anharmonicity of motions within macromolecular X-ray

structures (Levin et al., 2007). However, most current X-ray

structure-refinement methods are labor-intensive as stepwise

improvements are made to models by iterating between

automated refinement and manual intervention. Therefore,

more extensive modeling of structural heterogeneity and

uncertainty will depend more heavily on automated proce-

dures, especially for structures exhibiting concerted differ-

ences and where multiple models need to be refined in

parallel.

A promising representation of structural variability, which

we are exploring in this work, consists of the generation of

families of single-conformer crystallographic models consis-

tent with the reflection data. However, exploring the complex

energy landscape of macromolecules to identify alternative

structures is particularly challenging. Molecular-dynamics and

simulated-annealing protocols have expanded the range of

conformations that can be sampled using traditional

crystallographic refinement (Brunger & Adams, 2002; Brunger

et al., 1999; Brunger, Adams & Rice, 1998; Brünger et al.,

1987). However, even with these tools it is difficult to over-

come the large energy barriers associated with backbone re-

arrangements and/or side-chain re-packing (DePristo et al.,

2005).

It was recently demonstrated that the program RAPPER,

which uses libraries of backbone dihedral angles and side-

chain rotamers derived from high-resolution structures, can

generate ensembles of single-conformer models in which each

model satisfies given restraints; for example, agreement with

experimental electron density (DePristo et al., 2004, 2005).

Using an automated protocol built around the program

RAPPER, DePristo and coworkers constructed multiple

models for three macromolecules that fitted the experimental

X-ray crystallographic reflection data comparably well

(DePristo et al., 2004). These authors concluded that the

uncertainty in crystallographic structures has been under-

estimated and information may be lost if only a single model is

used to represent a macromolecule. Recently, Terwilliger et al.

(2007) constructed sets of high-quality single-conformer

models using a strategy that includes fragment-based loop

building and splicing together segments from multiple loop

candidates based on their fit to X-ray data. Terwilliger and

coworkers suggest that the variation among the structures in

the resulting ensemble provides an estimate of the precision of

a macromolecular model and forms a lower bound on the

uncertainty in the coordinates of the individual models.

In this paper, we describe how torsion-angle sampling with

scoring via a modern effective potential can be used to effi-

ciently explore the degree of structural variability that is

consistent with a given set of X-ray reflections. We propose an

iterative approach in which each cycle involves (i) an efficient

torsion-angle search using backbone and side-chain rotamer

libraries, hierarchical screening and clustering, and scoring

with an all-atom effective potential function to generate an

ensemble of low-energy conformations for a five-residue

segment; (ii) identification of the conformation that has the

best agreement with an experimental electron-density map in

real space and (iii) a short optimization of the new structure

using a reciprocal-space X-ray target function. This cycle is

repeated using a target window to define which segment of five

residues is modeled by torsion-angle sampling and then sliding

the target window along the entire sequence of the macro-

molecule. We use the Protein Local Optimization Program

(PLOP) to carry out the torsion-angle sampling (Jacobson et

al., 2004). PLOP has been used previously to model side-chain

and loop conformations (Andrec et al., 2002; Jacobson et al.,

2002, 2004; Zhu et al., 2006), crystal-packing interactions

(Jacobson et al., 2002) and binding pockets in induced-fit

docking (Sherman et al., 2006).

While the current work is similar in spirit to the approaches

described by DePristo and coworkers and by Terwilliger and

coworkers, there are significant differences with respect to the

methodology employed, the analysis of the results and the

goals of the project. One of the fundamental differences

between the torsion-angle sampling strategies is the adoption

in this work of a physics-based effective potential to filter and

score candidate structures for refinement. RAPPER avoids

the use of a chemical energy function by fitting candidate

structures to the X-ray data at an earlier stage in the filtering

process and Terwilliger and coworkers filter and score candi-

dates primarily using X-ray data criteria. While there are

several other significant differences in the sampling strategies

(Jacobson et al., 2004; de Bakker et al., 2003; Terwilliger et al.,

2007), perhaps the most important distinguishing feature of

the current work is our focus on generating sets of models that

are as diverse as possible which fit the X-ray data well. Finally,

in our analysis, we use a multi-conformer model to explore the
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possible contributions to conformational variability and pro-

pose criteria to identify where differences among models are

likely to arise from the true conformational heterogeneity that

exists in the crystal. Using synthetic data, Terwilliger and

coworkers have shown that model variability can represent

either the range of structures that are compatible with the

experimental data (i.e. what we call positional uncertainty) or

the set of structures that is actually present in the crystal (i.e.

what we call conformational heterogeneity). However, they

acknowledge that the latter effect is not addressed by their

work and that it would be more appropriately studied by an

ensemble-refinement procedure, such as that employed in this

work, in which structures are refined as a group against the

crystallographic data.

In this paper, we chose five proteins spanning 1.0–2.8 Å

resolution as test cases to illustrate how, starting from a PDB

structure, ensembles of structurally variable high-quality

structures can be obtained by iterative use of torsion-angle

sampling on an effective potential surface with filtering by and

optimizing against experimental X-ray data. We describe the

structural variability among the resulting models, compare the

fits of the individual models and of the ensemble to the

experimental X-ray data and explore the role played by the

effective potential in generating high-quality ensembles. Using

HIV-1 protease, calmodulin and SUMO-conjugating enzyme

as examples, we show how variability in the ensemble of

PLOP structures captures the structural variability that is

observed across multiple crystal structures and in NMR

ensembles and is linked to functional flexibility at hinge

regions and binding interfaces. Explicitly modeling structural

variability is particularly important for gaining insight into

binding-site plasticity as well as the conformational flexibility

of binding interfaces and for constructing multiple structures

that can be used as three-dimensional targets in structure-

based drug design.

2. Methods

2.1. Protein structures and reflection data

Atomic coordinates and structure factors (including test-set

and training-set assignments) for 1g35 (Schaal et al., 2001),

1a3s (Tong et al., 1997), 1exr (Wilson & Brunger, 2000), 9ilb

(Yu et al., 1999) and 1ew4 (Cho et al., 2000) were obtained

from the Protein Data Bank (Berman et al., 2000, 2003). Two

of the test cases (1g35 and 9ilb) were used by DePristo and

coworkers to test the RAPPER protocol. RAPPER-generated

models for HIV-1 protease were obtained from http://

www-cryst.bioc.cam.ac.uk/rapper/ (DePristo et al., 2004). To

reduce the impact of model bias and allow a more thorough

exploration of conformational space and increased structural

variability among the final models, for each macromolecule

ten different initial structures were generated by simulated

annealing starting from the PDB structure (see supplementary

material1 for details).

2.2. Iterative X-ray structure refinement using protein local
optimization with torsion-angle sampling

Each cycle in our iterative protocol consists of (i) an

extensive torsion-angle search in PLOP to generate an

ensemble of low-energy conformations for a segment of five

residues, (ii) identification of the PLOP candidate with the

best agreement to the X-ray data based on the real-space

correlation coefficient (RSCC) of the modeled segment and

(iii) a short optimization of the new structure in CNS using the

maximum-likelihood function. Six different start sites for the

target window were used on each of the 11 initial structures

[ten simulated annealing with molecular dynamics (SA/MD)

structures and the PDB model] to generate a total of 66 final

PLOP structures for each protein. Between each cycle, the

target window was translocated along the sequence by three

residues: in general, from the start site to the C-terminus and

then from the start site to the N-terminus. The resulting

ensemble of PLOP models was filtered to remove variability

among the models that did not represent comparable or

improved alternatives relative to the PDB structure. Each of

these steps in the cycle is described below.

Step 1: hierarchical torsion-angle sampling. Loop prediction

in PLOP is accomplished via an ab initio construction

procedure which, at the limit of highest resolution, exhaus-

tively searches the phase space of possible loop geometries

connecting the two loop stems. The method achieves both

efficiency and high accuracy via deployment of a hierarchy of

scoring functions; rapid screening functions are used to elim-

inate large numbers of high-energy loops at early stages,

ultimately yielding a relatively small number of candidates

that are evaluated via minimization with the accurate OPLS-

AA/SGBNP effective energy function. See the supplementary

material and Jacobson et al. (2004) for more details.

Step 2: filtering PLOP candidates. For each PLOP candidate

that was within 84 kJ mol�1 of the lowest energy model (in

practice 5–30 candidates), 2Fo � Fc (3Fo � 2Fc for the low-

resolution structures 1a3s and 9ilb) and Fc maps were gener-

ated in CNS v. 1.1 (Brünger, Adams, Clore et al., 1998). The

mean RSCC for the targeted five-residue segment in each

PLOP candidate was calculated in MAPMAN (Jones et al.,

1991; Kleywegt & Jones, 1996) and the PLOP candidate with

the highest mean RSCC for the remodeled segment was

selected as the optimal PLOP candidate.

Step 3: refinement of the optimal PLOP candidate. The

optimal PLOP candidate was subjected to a restrained

coordinate optimization (two cycles of ten steps of conjugate-

gradient energy minimization) and, for the high-resolution

structures, 30 steps of B-factor optimization. The CNS-

optimized structure became the seed structure for the

subsequent cycle of PLOP modeling in which a new target

window was defined. Steps 1–3 were repeated until each

residue in the protein had been sampled by PLOP at least

once.

Step 4: filtering the ensemble of PLOP models. The

ensemble of 66 PLOP models was filtered to remove varia-

bility in the PLOP ensemble that was not achieved with a

similar or improved RSCC relative to the PDB structure. The
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residue-specific RSCCs (resRSCCs) for all PLOP candidates

that were variable at a given residue were evaluated in

MAPMAN from the corresponding 2Fo � Fc (3Fo � 2Fc for

the low-resolution structures 9ilb and 1a3s) map generated by

CNS. If at a given variable residue all alternative conforma-

tions demonstrated degraded resRSCCs relative to the PDB

structure, PLOP models which exhibited variability at this site

were removed. Degradations in resRSCCs were described by

resRSCCðPDB; iÞ � resRSCCðPLOPj; iÞ>

0:5½1� avg5resRSCCðPDB; iÞ�

or

resRSCCðPDB; iÞ � resRSCCðPLOPj; iÞ> 0:03

and

resRSCCðPDB; iÞ � resRSCCðPLOPj; iÞ>

0:25½1� avg5resRSCCðPDB; iÞ�;

where avg5resRSCC is the resRSCC averaged over residues

i � 2 through i + 2. In cases where over half of the PLOP

models showed variability and all variability was degraded by

the above criteria, rather than

eliminate the structures, PLOP

variability at this residue was

described as a false positive. Out

of the 214 variable residues across

the five proteins, only nine were

false positives.

2.3. Optimizing ensemble
occupancy values

For each protein, all possible

combinations of five PLOP

models from the filtered ensemble

were identified. The subset of five

PLOP structures that had the

largest number of distinct variable

residues compared with the

corresponding PDB structure was

selected along with the PDB

structure to undergo ensemble

optimization. Where multiple sets

of structures fitted these criteria,

the subset with the lowest average

R value was selected. Occupancy

values for the PDB structure and

each of the structures in the

selected set were optimized by

sampling 3500 different initial

occupancy values via Monte

Carlo sampling and minimization

in CNS, i.e. the occupancy values

were the only adjustable para-

meters while the X-ray target

function was minimized.

3. Results

3.1. Trends in modeling
structural variability in X-ray structure refinement

3.1.1. Summary of model quality. The automated iterative

protocol we developed typically generates 20–60 structural

models for each protein upon completion of the refinement.

The model quality and variability in the ensembles of single-

conformer structures are summarized in Table 1. For all five

proteins studied, this procedure generates models of equal or

higher quality than the original PDB structure, with similar

mean real-space correlation coefficients (RSCC) and

improvements in Rfree of up to one percentage point. Because

reciprocal-space criteria were not used to filter the ensembles,

some models with relatively large Rfree values containing

improved local fits to the electron density in regions of

variability are retained in the ensembles. In all the models the

bond lengths and angles have close to ideal geometry; between

96 and 100% of the residues are found in Ramachandran core

and allowed regions. Table 2 shows comparable model quality

for the sets of PLOP and RAPPER single-conformer models

of HIV-1 protease.
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Table 1
Summary of model quality and variability.

Results for ensembles of single-conformer PLOP models for calmodulin (1exr), CyaY protein (1ew4), HIV-1
protease (1g35), human interleukin-1� (9ilb) and SUMO-conjugating enzyme (1a3s). Minimum and maximum
values for structures in each ensemble are reported.

PDB code 1exr† 1ew4 1g35 9ilb 1a3s

Resolution (Å) 1.0 1.4 1.8 2.3 2.8
PDB‡ R 0.232 0.208 0.179 0.148 0.205
PDB‡ Rfree 0.254 0.230 0.225 0.205 0.266
PDB‡ RSCC 0.93 0.93 0.95 0.95 0.92
No. of PLOP structures 32 20 40 53 38
Backbone r.m.s.d. (Å) 0.15–0.18 0.08–0.18 0.08–0.09 0.27–0.49 0.28–0.59
Non-H atoms r.m.s.d. (Å) 0.65–0.88 0.61–0.87 0.47–0.69 0.81–0.99 0.91–1.18
Total nonglycine residues 135 97 172 145 149
No. of variable side chains

Ensemble total§ 50 26 46 62 76
False positives} 3 5 0 0 1

PLOP model quality††
R 0.234–0.245 0.208–0.230 0.178–0.185 0.157–0.165 0.209–0.220
Rfree 0.254–0.271 0.228–0.248 0.216–0.236 0.195–0.211 0.262–0.284
Average RSCC 0.92–0.93 0.92–0.93 0.95 0.95–0.96 0.91–0.92
Average RSR 0.211–0.221 0.193–0.202 0.149–0.155 0.104–0.115 0.164–0.173
Average B factor (Å2) 17.1–17.7 19.5–19.8 20.5–20.8 40.3–41.2 42.1–43.6
Minimum B factor (Å2) 5.6–6.0 6.5–8.8 5.4–6.3 11.4–12.3 13.4–14.9
Maximum B factor (Å2) 53.5–57.6 65.6–99.0 58.3–96.5 177.0–178.9 96.4–97.9
R.m.s.d. bonds (Å) 0.022–0.025 0.020–0.025 0.025–0.028 0.029–0.033 0.009–0.010
R.m.s.d. angles (�) 1.7–1.9 2.0–2.1 2.2–2.8 2.5–2.8 1.5–1.6
R.m.s.d. dihedrals (�) 20.7–21.8 24.6–25.4 26.1–26.7 26.9–27.8 23.3–24.4
R.m.s.d. impropers (�) 1.3–1.5 1.3–1.4 1.6–1.9 1.5–1.8 1.1–1.3
Ramachandran plot: core (%) 93–95 94–95 96–98 84–90 85–90
Ramachandran plot: allowed (%) 5–7 4–6 3–4 12–16 8–14
Unfavorable �1–�2‡‡ (%) 0–2 0–2 0–2 1–5 1–7

† Coordinates for the ‘A’ conformations for the 37 discretely disordered residues in 1exr were omitted and the occupancy values
were set to 1.0; thus, the R and Rfree are substantially poorer than those for the full published model. ‡ PDB results were
computed by performing cycles of CNS optimization (minimization for all proteins and B-factor optimization for 1exr, 1ew4 and
1g35) without PLOP torsion-angle sampling. § Total number of distinct side chains in the ensemble of PLOP models that are in
different conformations relative to the PDB structure. } False positives are defined as variable residues at which over half the
PLOP structures exhibit variability and the quality of the alternative conformations is degraded relative to the PDB
structure. †† R, Rfree and coordinate errors were computed in CNS. Real-space correlation coefficient (RSCC) and real-space R
value (RSR) values averaged over each residue were computed in MAPMAN. ‡‡ Number of residues lying in unfavorable
regions of the �1–�2 torsion-angle plots.



3.1.2. Summary of model variability. The PLOP structures

have mean backbone r.m.s.d.s of 0.08–0.6 Å and mean heavy-

atom r.m.s.d.s of 0.5–1.2 Å relative to the corresponding PDB

structures. The range of backbone and heavy-atom r.m.s.d.s

depicted in Fig. 1(a) shows that both the variability in atomic

coordinates relative to the PDB as well as within a PLOP

ensemble tend to increase with decreasing resolution. HIV-1

protease at 1.8 Å resolution is an outlier, but its more limited

variability is explained by its significantly higher proportion of

buried residues relative to the other proteins.

Side chains are defined as being in an alternative confor-

mation if any atom in the PLOP-generated side chain is more

than 1 Å away from the closest atom of the same residue in the

PDB structure. This working definition provides an estimate

of when atoms in a given conformation will be positioned

outside the envelope of electron density associated with the

reference structure. In this way, ring flips or concerted changes

in dihedral angles that result in side-chain atoms occupying

the same volume as the reference structure will not be iden-

tified as ‘variable’.

With the above definition, 15–40% of the side chains in any

individual PLOP structure are modeled in a different

conformation relative to the corresponding PDB structure.

The filtered ensemble of PLOP structures for each protein

contains alternative side-chain conformations for 25–50% of

the residues in the sequence. The side-chain variability we

measure is comparable to the 30% reported previously with a

less stringent criterion of variability (Stec et al., 1995).

Systematically omitting structures generated from a given

initial condition (i.e. any one of the ten initial simulated-

annealing structures or any one of the six different start sites

for the target windows) yielded reduced variability at no more

than two side chains or less then 4% of the total variability
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Table 2
HIV-1 protease structures: summary of model quality and variability.

Results for 1g35 are reported as means and standard deviations where
applicable. Results for the RAPPER and PLOP structures are reported as a
range representing the minimum and maximum values for structures in each
ensemble of single-conformer models. The same abbreviations are used as in
Table 1.

Set of models 1g35 RAPPER PLOP

No. of models 1 5 40
Backbone r.m.s.d. (Å) — 0.08–0.21 0.08–0.09
Heavy-atom r.m.s.d. (Å) — 0.53–0.57 0.47–0.69
No. of variable side chains

Ensemble total — 32 46
Relative to 1g35 — 19–25 14–23
Pairwise† — 6–13 5–25

Measures of model quality
R 0.178 0.179–0.186 0.178–0.185
Rfree 0.225 0.216–0.224 0.216–0.236
Average RSCC 0.949 � 0.027 0.948–0.951 0.948–0.952
Average RSR 0.152 � 0.037 0.150–0.154 0.149–0.155
Average B factor (Å2) 20.6 � 9.2 20.5–20.7 20.5–20.8
Minimum B factor (Å2) 6.3 5.1–5.9 5.4–6.3
Maximum B factor (Å2) 58.6 61.1–75.1 58.3–96.5
R.m.s.d. bonds (Å) 0.028 0.030–0.031 0.025–0.028
R.m.s.d. angles (�) 2.9 3.2–3.4 2.2–2.8
R.m.s.d. dihedrals (�) 25.6 26.2–27.0 26.1–26.7
R.m.s.d. impropers (�) 2.1 2.2–2.5 1.6–1.9

† Number of side chains in different conformations between two PLOP models.
Differences between all pairs of PLOP models were evaluated.

Figure 1
Structural variability among PLOP ensembles. (a) Median backbone
(filled squares) and heavy-atom (empty squares) r.m.s.d. between PLOP
models and the PDB structure as a function of resolution. Dashed lines
indicate the corresponding minimum and maximum r.m.s.d. values in the
respective ensembles of single-conformer PLOP models. (b) The number
of distinct side chains that are in different conformations relative to the
PDB structure was evaluated for every combination of n PLOP models.
The reported percentage side-chain variability is the maximum number of
variable side-chain conformations for a given number of PLOP models
(n) divided by the number of nonglycine residues in the corresponding
protein. (c) Side-chain variability in the respective PLOP ensembles
relative to the PDB structure categorized by charged surface residues
(filled squares), neutral surface residues (empty squares) and buried
residues (circles).



that was present in the filtered ensemble. In most cases, there

was no loss of variability. These tests indicate that this auto-

mated procedure is capturing most of the allowed variability

and that extending the cycles of refinement to generate more

single-conformer models will not greatly increase the

observed variability that is consistent with the crystallographic

data. Owing to the redundancy in the ensemble of PLOP

structures, we wanted to identify the minimum number of

structures that are required to represent the side-chain

variability that is observed in the full ensemble of PLOP

structures. By comparing all possible combinations of subsets

of PLOP structures for each protein, we computed the

maximum number of distinct variable side-chain conforma-

tions relative to the PDB structure that are present for a given

number of PLOP structures. Fig. 1(b) shows for each protein

the percentage of side chains that are in alternative confor-

mations relative to the PDB structure as a function of the

number of PLOP structures in the subset. For each of the test

cases, five PLOP structures are sufficient to capture at least

85% of the structural variability present in the full PLOP

ensembles and with ten PLOP structures the full variability

can be represented.

Fig. 1(c) illustrates the side-chain variability that is observed

for the different classes of residues in the ensemble of PLOP

structures and Table 3 summarizes, as an example, the char-

acteristics of variable residues for PLOP and RAPPER

ensembles of HIV-1 protease. Several trends have been

described previously (Smith et al.,

1986; Stec et al., 1995; Rejto &

Freer, 1996). The majority of the

residues exhibiting structural

variability are on the surface of

the protein and over half of these

are long charged residues: lysine,

arginine and glutamate residues.

Most of the nonvariable charged

surface side chains are restrained

by ion pairing and intermolecular

and intramolecular hydrogen

bonding. Buried side chains

account for �10% of the confor-

mational variability and tend to

involve valine or isoleucine resi-

dues in which the side chains have

been rotated �120� about the �1

torsion angles so that one of the

C� atoms in each conformation

occupies the same density.

Unexpectedly, variability is

observed among residues that in

more manual crystallographic

refinement strategies would be

assumed to be in well defined

single conformations and tradi-

tionally would neither be targeted

for further refinement nor be

regarded as candidate sites at

which multiple conformations should be modeled. In fact, for

the five proteins under investigation, 15–45% of the PLOP

side chains that are modeled in different conformations rela-

tive to the PDB structure have low B factors and/or high

RSCC values. However, rather than being indicative of PLOP

errors, nearly all of these alternative PLOP conformations

exhibit high RSCCs in the context of their own electron-

density maps. This unanticipated variability suggests that the

extensive automated sampling protocol based on backbone

and side-chain rotamer libraries used in PLOP can be parti-

cularly effective at thoroughly exploring and refining regions

that may be overlooked by manual model building. These

results also serve as a cautionary note about the uncritical use

of RSCC values as validation parameters owing to inherent

difficulties with model bias (Kleywegt, 2000). In principle,

some of these incongruities could be explored further using

simulated-annealing OMIT maps during refinement.

3.1.3. Importance of the effective potential for refinement.
The standard effective potential used in the PLOP modeling

consists of the all-atom OPLS force field (Kaminski et al.,

2001; Jorgensen et al., 1996; including bond, angle and dihedral

energies as well as van der Waals and electrostatics energies)

together with the SGB/NP continuum solvation model [the

surface implementation of the generalized Born model

(Ghosh et al., 1998) and also including a nonpolar hydration

free-energy estimator which represents the nonpolar energies

as the sum of an unfavorable cavity work term plus a favorable
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Table 3
HIV-1 protease: distribution of variable side chains based on 1g35.

RAPPER and PLOP structures were generated from the X-ray reflection data associated with 1g35. Each residue
was classified according to its side-chain electron density in the 1g35 2Fo � Fc map, as well as its real-space
correlation coefficient (RSCC) and mean B factor in 1g35. Each variable side chain using the 1 Å distance cutoff is
categorized as unique to the RAPPER structures, unique to the PLOP structures or common to both sets of
structures.

Total
residues

Total variable
RAPPER residues

Total variable
PLOP residues

Total variable
residues

Total nonglycine residues 172 32 46 52

Total
residues

Variable residues
unique to RAPPER

Variable residues
unique to PLOP

Variable residues
common to both

Total variable
residues

Environment
Surface, charged 34 4 4 13 21
Surface, other 64 0 7 10 17
Surface, total 98 4 11 23 38
Buried, total 74 2 9 3 14
Total 172 6 20 26 52

Electron density
None, weak 10 1 0 8 9
Ambiguous 39 2 11 17 30
Well defined 123 3 9 1 13

RSCC
0.843–0.936 43 0 5 16 21
0.936–0.956 49 0 10 9 19
0.956–0.969 46 3 4 0 7
0.969–1.000 34 3 1 1 5

Mean B factor (Å2)
23.0–45.2 43 0 8 17 25
17.0–23.0 43 2 8 7 17
13.5–17.0 41 0 1 2 3
7.0–13.5 45 4 3 0 7



van der Waals dispersion term (Gallicchio et al., 2002); ‘sgbnp’

in Table 4]. To assess the role of the effective potential in the

strategy for crystallographic refinement using PLOP, we

generated ensembles of single-conformer structures in which

the electrostatics and solvation terms were eliminated from

the PLOP energy (‘noelec’ in Table 4). This potential mimics

the chemical energy generally used in CNS and X-PLOR

(Moulinier et al., 2003). The results summarized in Table 4

demonstrate that inclusion of the electrostatics term with

solvation improves the refinement and generates structures

with lower Rfree values. Fig. 2 shows the distributions of Rfree

values for ensembles of single-conformer structures for 1g35

generated with and without the electrostatic and solvation

terms included in the effective potential. 40% of the models

generated with the full potential have Rfree values that are

improved relative to 1g35, compared with only 11% of the

corresponding ensemble modeled without the electrostatics

and solvation terms. In addition, twice as many ‘sgbnp’ models

pass through the real-space filtering criteria compared with

the ‘noelec’ models. This suggests that when the same

discretized backbone and side-chain rotamer libraries are

used, PLOP optimization and scoring using the OPLS-AA/

SGBNP effective potential is significantly more effective than

the truncated potential for generating conformations with the

lowest Rfree values and most favorable local features.

3.1.4. Ensemble models for distinguishing conformational
heterogeneity from uncertainty in atomic positions. We

further analyzed each of the five proteins to identify residues

for which structural variability could be attributed to physical

conformational heterogeneity of the sample rather than to

ambiguities in the data (related to, for example, imperfections

in the crystal, limitations in data acquisition or inadequacies in

the refinement model). In order to address this question, it is

necessary to resort to ensemble-refinement approaches (Levin

et al., 2007). We performed limited ensemble-refinement

calculations based on the single-conformer sets described

above. For each protein, the multi-conformer model consists

of the original PDB structure and the subset of five single-

conformer PLOP structures that together exhibit side-chain

variability at the most residues in the sequence. The ensemble

R and Rfree were determined by minimizing the X-ray target

function as a function of the occupancy values for each

structure via a Monte Carlo procedure. The Rfree values

resulting from this procedure are summarized in Table 4 and

indicate that the ensemble models provide equivalent or

better representations of the reflection data than the best

single-conformer models. In all cases, the optimized overall

occupancy of the PDB structure is less than 0.5, confirming

that the models generated from the automated PLOP

refinement procedure indeed capture variability that is

consistent with the X-ray reflection data.

We examined each of the ensembles to identify those resi-

dues for which conformational variability could be attributed

to either conformational heterogeneity or positional uncer-

tainty. Firstly, we visually inspected each of the corresponding

�A-weighted 2Fo � Fc electron-density maps contoured at the

1� level. Variability at residues that did not have good side-

chain density was attributed to positional uncertainty. Weak

electron density in these areas generally indicates that no

single conformation or small subset of conformations was

adopted significantly more frequently than others.
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Table 4
Summary of model quality: ensemble-refinement measurements and role
of effective potential.

PDB code 1exr 1ew4 1g35 9ilb 1a3s

Resolution (Å) 1.0 1.4 1.8 2.3 2.8
PDB†

R 0.232 0.208 0.179 0.148 0.205
Rfree 0.254 0.230 0.225 0.205 0.266

Best individual in ensemble‡
R 0.235 0.208 0.178 0.159 0.209
Rfree 0.254 0.228 0.221 0.199 0.264

Ensemble§
R 0.238 0.207 0.181 0.162 0.214
Rfree 0.253 0.224 0.214 0.181 0.265

Fractional ensemble occupancy}
PDB 0.39 0.40 0.31 0.44 0.23
PLOP 0.07–0.17 0.01–0.43 0.06–0.23 0.04–0.19 0.03–0.27

Best individual (sgbnp)††
R 0.235 0.208 0.179 0.158 0.209
Rfree 0.254 0.228 0.216 0.195 0.262

Best individual (noelec)††
R 0.236 0.211 0.180 0.158 0.210
Rfree 0.262 0.236 0.223 0.200 0.268

† PDB results are the same as described in Table 1. ‡ The lowest Rfree structure in the
highly diverse ensemble. The highly diverse ensemble was identified as the PDB structure
and the subset of five PLOP structures (from the filtered ensemble) that yielded the
largest number of distinct side-chain conformations relative to the PDB struc-
ture. § The lowest ensemble R resulting from optimizing the fractional occupancies
of the highly diverse ensembles. } The corresponding fractional occupancies after
optimization. †† The lowest Rfree structure from the filtered ensemble of single-
conformer models generated using the full (‘sgbnp’) or truncated (‘noelec’) potentials in
PLOP.

Figure 2
Higher quality models generated using the full potential in PLOP. The
distribution of Rfree values is shown for the filtered ensembles of PLOP
models that were generated using the full potential (‘sgbnp’, solid black)
and without the electrostatics and solvation terms (‘noelec’, shaded) in
PLOP. 40 structures are in the filtered ‘sgbnp’ ensemble and 18 structures
are in the filtered ‘noelec’ ensemble. The Rfree of the PDB structure is
0.225.



Secondly, for each variable residue k for which there was

continuous backbone and side-chain electron density, an

occupancy-weighted spread in atomic coordinates from the

variance of the distribution of positions in the ensemble was

defined by

�kðSÞ ¼ max
j

PN
i¼1

pi rijk �
PN
i¼1

pirijk

����
����

2
 !1=2

2
4

3
5; ð1Þ

where N is the number of conformations in the ensemble, pi is

the occupancy of structure i in the optimized ensemble and rijk

is the position of atom j in residue k in the ith member of the

ensemble. The positional uncertainty for each residue was

similarly estimated from the atomic B factors,

�kðBÞ ¼ max
j

3Bjk

8�2

� �1=2

: ð2Þ

We propose that to a first approximation the observed

conformational variability of residue k is more likely to reflect

the true structural heterogeneity present within the crystal

when

�kðSÞ>�kðBÞ: ð3Þ

Fig. 3 shows a plot of �(S) versus �(B) for the variable residues

in each of the five proteins studied. Minor changes in the

threshold criterion will affect the assignment of variable

residues with �(S) ’ �(B). Nevertheless, the results of this

analysis, summarized in Table 5, shows that for four of the five

proteins studied between 25% and 50% of the variable resi-

dues satisfy the criteria that �(S) > �(B). The exception, 9ilb,

has proportionally many more variable residues that are

assigned to positional uncertainty than the other four proteins,

primarily owing to the lack of side-chain density for many of

its residues and the systematically higher B factors for the

remaining variable residues.

To determine where side-chain variability would be antici-

pated by a PDB-phased electron-density map, we inspected

the �A-weighted 2Fo� Fc electron-density maps phased by the

corresponding PDB structure and identified residues at which

the density at the 1� contour level was visibly consistent with

multiple conformations. The results are shown in Table 5. For

each of the proteins except 1exr, alternative electron density

has not been clearly identified for many residues as a conse-

quence of one or more of the following: model bias in the

phasing, weakly populated states or systematic refinement

errors.

To validate the approach outlined above in discriminating

physical heterogeneity from positional uncertainty, we

compared the side chains modeled in multiple conformations

in the 1exr PDB structure of calmodulin with those in the

corresponding ensemble obtained in this work. 30 of the 37

residues modeled in alternative conformations in the PDB

structure are described as ‘variable’ given our 1 Å criteria and

half of these residues exhibit ‘structural heterogeneity’

according to the criteria above. In both sets of calmodulin

models, the PDB structure as well as our ensemble, between

10% and 15% of the nonglycine residues exhibit physical

heterogeneity (i.e. 15 residues for 1exr and between 12 and 22

for the ensemble). For 11 of the 15 1exr variable residues that

are attributed to physical heterogeneity, very similar alter-

native conformations are also observed among the ensemble.

For the remaining four variable residues, the spread in atomic

positions within the ensemble is smaller than the corre-

sponding spread observed in 1exr; for these residues, the

variability in the ensemble is assigned to uncertainty. Thus, in

general, there is a good correspondence between the variable

residues that are assigned to physical heterogeneity using the

automated procedure adopted here and from traditional

model-building efforts.

3.2. Capturing structural variability: three case studies

3.2.1. Multiple crystal structures and RAPPER models:
HIV-1 protease (1.8 Å). A thorough analysis of the structural

flexibility of HIV-1 protease was performed by Zoete et al.

(2002) using a database of X-ray structures. Mobility of the

research papers

390 Knight et al. � Torsion-angle sampling Acta Cryst. (2008). D64, 383–396

Figure 3
Contribution of variable side-chain conformations attributed to structural
heterogeneity. Scatter plot of �(S) and �(B) values for each residue
identified as ‘variable’ using the volumetric definition and a 1 Å cutoff.
Residues for which there is poor side-chain density have been omitted for
clarity. The dashed line indicates the threshold for attributing the
modeled variability to structural heterogeneity (right of the line) or
positional uncertainty (left of the line).

Table 5
Distinguishing conformational heterogeneity from positional uncertainty.

PDB code 1exr 1ew4 1g35 9ilb 1a3s

Resolution (Å) 1.0 1.4 1.8 2.3 2.8
Total No. of nonglycine residues 135 97 172 145 149
No. of variable side chains† 40 16 36 55 73
Average �(B)‡ 1.00 1.19 1.09 1.64 1.41
Assignment

Positional uncertainty 18 11 18 53 56
Physical heterogeneity 22 5 18 2 17
Physical heterogeneity with

multiple density envelopes
12 3 2 0 0

† False positives in the highly diverse PLOP ensembles were omitted from further
analysis and were not included in the number of variable side chains. ‡ For residues
which contain good backbone and side-chain density.



flap tips has been implicated in the function of HIV-1 protease

by allowing substrate access to the catalytic aspartate residues

(Erickson & Kempf, 1994; Miller et al., 1989). Fig. 4(a) depicts

these flexible regions in HIV-1 protease. Fig. 4(b) shows that

while each PLOP structure exhibits different structural

details, the largest deviations among the PLOP models for

HIV-1 protease are localized in three surface loops (residues

14–20, 35–46 and 62–70). These variations are consistent with

the results from normal-mode analyses or Gaussian network

model analyses of HIV-1 protease crystal structures and

snapshots along molecular-dynamics trajectories (Kurt et al.,

2003; Zoete et al., 2002). The corresponding surface loops on

chain B are stabilized by crystal contacts, thus breaking any

symmetry of the dimer flexibility. In fact, the qualitative

features of backbone variability observed across many crystal

structures or predicted by molecular dynamics and normal-

mode analysis are captured by both RAPPER and PLOP

ensembles for HIV-1 protease. The magnitude of the struc-

tural variations in the RAPPER and PLOP ensembles,

however, is significantly smaller than that observed by

comparing multiple crystal structures (Zoete et al., 2002),

primarily owing to the specific physical packing forces which

restrain the conformational flexibility in a single X-ray crys-

tallographic experiment corresponding to a single crystal

form.

We observe greater side-chain variability among the

ensemble of HIV-1 protease structures generated with PLOP

than in the corresponding ensembles reported by DePristo et

al. (2004). Of the 172 nonglycine residues in 1g35, 32 have a

different conformation in at least one RAPPER model and 46

in at least one PLOP model; these results are shown in Table 2.

Table 3 summarizes the environment of the HIV-1 protease

side chains that exhibit variable conformations. The flap

hinges and tips, the flexibility of which is necessary for

protease activity, are densely populated with variable side-

chain conformations: 43% and 50% of the nonglycine residues

of the flap tip and hinge regions are variable in the RAPPER

and PLOP models, respectively, compared with only 27% of

the remaining nonglycine residues. The primary differences

between the PLOP and RAPPER structures are the increase

in variability among the neutral surface residues and buried

residues. Five of the six side chains that are variable in the

RAPPER structures and not in the PLOP structures have

RSCCs for the alternative RAPPER side chains that are

degraded by more than 0.04 relative to 1g35 and thus are

indicative of RAPPER modeling errors or the modeling of

weakly populated side-chain conformations. In contrast, all of

the variable residues among the PLOP structures for 1g35

have alternative conformations that have comparable or

better RSCCs for that residue relative to the PDB structure.

20 side chains are variable in the PLOP structures but not

variable in the RAPPER structures; 19 of these residues have

the 1g35/RAPPER conformation modeled by at least one of

the PLOP structures, suggesting that multiple low-energy

conformations exist in these regions that are consistent with

the crystallographic data.

It is not clear whether the larger structural variability found

for HIV-1 protease among the PLOP structures reported here

relative to those reported by DePristo et al. (2004) using

RAPPER reflects inherent differences in the search algo-

rithms, since in the current work our explicit goal was to

generate as diverse a set of high-quality structures as possible,

whereas in DePristo et al. (2004) the goal was to construct a set

of alternative structures with comparably low Rfree values. In

any case, we note that the underlying torsion-angle sampling

algorithms are significantly different. PLOP is closer in spirit

to exhaustive enumeration of backbone and side-chain

rotamer libraries, the results of which are filtered using the

chemical energy and then fitted to the electron density. In

contrast, RAPPER torsion-angle sampling uses a genetic

algorithm to build up fragments which are filtered by their fit

to the electron density at an earlier stage in the build-up

process.

3.2.2. Modeling multiple side-chain conformations at high
resolution: calmodulin (1.0 Å). Wilson & Brunger (2000)

published a high-resolution calmodulin structure, 1exr, in

which 37 of 146 residues are modeled in two conformations.

These residues are predominantly in the central helix and the
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Figure 4
Structural variability in HIV-1 protease. (a) Cartoon representation of
HIV-1 protease (1g35; Schaal et al., 2001). The variable loops described
by Zoete et al. (2002) are colored in red and the residue numbers are
indicated; the ligand for 1g35 is colored in green and the catalytic
aspartate residues are represented by blue spheres. (b) Backbone r.m.s.d.
values as a function of residue number for five PLOP structures. The first
99 residues correspond to chain A and the last 99 residues correspond to
chain B.



two hydrophobic binding pockets, which may permit target-

specific recognition. Our initial model contained atomic

coordinates from only one conformation (labeled ‘B’ in the

PDB) for each residue in calmodulin. Among the final PLOP

structures in the multi-conformer ensemble, seven residues

are modeled exclusively in the 1exr ‘A’ conformation; in 1exr,

these have high occupancy values for conformation A that

range from 0.63 to 0.91. Three side chains are modeled by the

PLOP refinement exclusively in the 1exr ‘B’ conformation; in

1exr, these residues have systematically lower occupancy

values for the A conformation, i.e. between 0.31 and 0.48. For

eight residues, the PLOP conformations appear to be stag-

gered between the A and B side-chain conformations, remi-

niscent of interpolated structures based on A and B ‘end

points’. These residues have mid-range occupancy values

(0.44–0.60) for the A conformation in the PDB structure. The

remaining 12 side chains that have multiple conformations in

the 1exr structure are modeled in multiple conformations in

the PLOP ensemble.

Wilson and Brunger noted that there were indications of

structural variability beyond that which they modeled expli-

citly using their contour-based criterion. In agreement with

this observation, 24 additional side chains are modeled in

alternative conformations in the PLOP ensemble. Two-thirds

of these residues have long charged side chains. Of particular

interest, however, is the observed variability at six out of eight

methionine residues (four of these side chains are variable in

1exr). The calmodulin methionine residues are dynamic in

solution and this malleability is proposed to facilitate the

binding of a diverse set of target proteins (O’Neil & DeGrado,

1990). These PLOP models could represent snapshots of the

potential substates occupied by calmodulin in solution which

are required for binding specificity and versatility.

3.2.3. Multiple crystal structures, NMR experiments:
SUMO-conjugating enzyme (2.8 Å). Two regions of SUMO-

conjugating enzyme (also called Ubc9) were determined by

NMR experiments to be more mobile than the remainder of

the protein (Liu, Yuan et al., 1999). Comparison of multiple

crystal structures at high resolution suggests flexibility in these

same regions (Tong et al., 1997). The flexible N-terminal

region has been identified as the SUMO-binding site (Tatham

et al., 2003; Liu, Jin et al., 1999), whereas the region near the

C-terminus corresponds to the binding site of the target

proteins (Bernier-Villamor et al., 2002). Ubc9 can recognize a

variety of protein targets and it has been proposed that the

variability of the binding interface aids in substrate-specific

recognition.

We generated 38 structures for SUMO-conjugating enzyme

starting from the 1a3s crystal structure, using X-ray reflection

data resolved to 2.8 Å. The backbone deviations are largest in

the loop consisting of residues 32–36, with r.m.s.d.s of 1–3 Å

relative to 1a3s. There are no crystal contacts restricting the

conformational flexibility of this loop; thus, PLOP modeling is

able to sample large variations in loop structures to provide

alternative low-energy conformations in the absence of well

resolved electron density in this region. Half of the 149

nonglycine residues of Ubc9 are modeled in different

conformations in the PLOP models relative to 1a3s. Variable

side-chain conformations are concentrated in regions in which

variability has been observed across multiple crystal structures

(Tong et al., 1997) and NMR experiments (Liu, Yuan et al.,

1999); i.e. 67% of residues 32–36 and 121–146 exhibit different

conformations.

Although there are relatively small variations in the back-

bone coordinates along the active-site cleft and protein-

binding interfaces (�0.2–0.3 Å r.m.s.d.), there are significant

variations in the side-chain conformations in these regions.

The target protein-binding surface (residues 85–92 and 123–

143) shows 57% variability, while the SUMO-binding surface

(residues 10–27) exhibits variability in 53% of the side-chain

conformations. This conformational variability suggests that

using a single Ubc9 structural target in drug–protein or

protein–protein interactions may limit the reliability of results

from high-throughput docking. Flexible fitting approaches to

docking could be implemented by using multiple high-quality

PLOP models that depict the range of conformations that is

observed at the interfaces.

4. Discussion

4.1. Role of torsion-angle sampling in structure refinement

X-ray structure-refinement programs traditionally use

target functions to optimize the agreement of an atomic model

both with observed X-ray diffraction data and a priori

chemical information. Whereas efficient algorithms exist for

local optimization of the target function, the problem of

locating the global minimum remains challenging owing to the

high dimensionality of the search space. In 1987, simulated

annealing with molecular dynamics (SA/MD) was adapted for

X-ray structure refinement (Brünger et al., 1987); SA/MD

explores conformational space more extensively than local

minimization methods. In principle, simulated annealing

identifies the global minimum of the target function. However,

in practice difficulties exist in locating the global minimum for

complex systems in a finite period of time using realistic

annealing schedules. An alternative to SA/MD is torsion-angle

sampling, which has recently been introduced into X-ray

structure refinement (DePristo et al., 2004, 2005; Terwilliger et

al., 2007), in which backbone dihedral angle and side-chain

rotamer libraries are used to sample many conformations

within a macromolecule and conformations are scored by their

fit to an experimental electron-density map. A torsion-angle

sampling and rebuilding algorithm with an all-atom force field,

as implemented in the protein-folding program Rosetta, has

recently been shown to be able to provide ab initio high-

quality initial structures for protein crystallographic refine-

ment (Qian et al., 2007).

A primary advantage of torsion-angle enumeration is that

sampling is not directly affected by the roughness of the target

function, so alternative low-energy conformations that might

be separated from the initial structure by large energy barriers

can be explored systematically. However, concerted changes

in side-chain or backbone conformations are difficult to model

research papers

392 Knight et al. � Torsion-angle sampling Acta Cryst. (2008). D64, 383–396



unless all the atomic coordinates involved in the changes are

optimized simultaneously. Discrete torsion-angle sampling

does not depend on the initial conformation for the segment

of residues that are under investigation. For a local region, the

torsion-angle conformational space can be sampled almost

exhaustively, although the conformation of the remainder of

the structure directly determines the quality of the selected

local candidates. Torsion-angle sampling scales exponentially

with the number of degrees of freedom. In PLOP, this

exponential scaling is tempered by an adaptive build-up

procedure and by using clustering as well as screening tech-

niques. Both efficiency and accuracy are achieved via the

deployment of a hierarchy of scoring functions; rapid

screening functions are used to eliminate a large number of

high-energy conformations in the early stages, ultimately

yielding a relatively small number of candidates whose ener-

gies are evaluated via minimization of an all-atom molecular-

mechanics energy function with continuum solvent model.

Even so, in practice, �50 degrees of freedom or 13 residues is

currently the upper limit of the size of segment that can be

modeled with PLOP (Jacobson et al., 2004; Zhu et al., 2006).

Moreover, owing to the discretized nature of the torsion-angle

libraries (resolution of 5–10�), the sampled conformations

require an additional step of local optimization to the nearest

energy minimum.

There is no one-size-fits-all approach to X-ray structure

refinement. SA/MD is suitable for refining entire structures

which are far from the global minima. SA/TLS and NMA are

well suited to exploring collective anisotropic thermal motions

of the macromolecules and refining modest-resolution

crystallographic structures. Torsion-angle sampling has

advantages in refining parts of structures (such as loops)

assuming that the coordinates in the rest of the structure are

almost correct. The challenge of effectively and explicitly

modeling structural variability in X-ray structure refinement,

in which the starting structure is nearly correct, is best

addressed by torsion-angle sampling, which gives the most

aggressive exploration in local regions. We developed our

automated iterative procedure to take advantage of (i) the

systematic yet rapid enumeration afforded by hierarchical

torsion-angle sampling guided by an accurate modern effec-

tive potential with (ii) filtering using fitting to the real-space

electron-density map and (iii) minimization of a target

function containing chemical and reciprocal-space X-ray

energy terms that would optimize all atomic coordinates yet

retain well refined regions of the model. Owing to the inher-

ently local nature of torsion-angle sampling, we cycle through

the sequence of the macromolecule in order to capture

structural variability that may exist throughout the model and

that is consistent with experimental X-ray reflection intensity

data.

4.2. Distinguishing physical conformational heterogeneity
from uncertainty in atomic positions

Multiple sources can contribute to conformational varia-

bility among structural models refined from the same crys-

tallographic data set. Frequently, structural differences reflect

uncertainty in the atomic positions which are associated with

the limited resolution of the experimental data and/or with

inadequate assumptions in refinement protocols. Conforma-

tional heterogeneity arising from protein motions is often

absorbed into the B factors and interpreted formally as posi-

tional uncertainty when the refinement is performed using a

single-conformer isotropic B-factor model. Isotropic B-factor

models assume uncorrelated atomic harmonic fluctuations

that are described by single-particle isotropic Gaussian func-

tions. This assumption leads to ambiguities in the location of

atomic positions in cases when the actual distributions of

atomic positions are anisotropic and/or multimodal.

In our single-conformer isotropic B-factor models, the

distance cutoff criterion of 1 Å identifies alternative confor-

mations that intuitively would be considered to be ‘different’

when observed in a molecular viewer. Our proposed criterion

to distinguish between physical heterogeneity from positional

uncertainty is based on ensemble models and considers the

electron density that would surround the atomic coordinates

given the magnitude of the corresponding B factors. If we

imagine constructing an electron-density map from the atomic

coordinates and B factors, the larger the B factors, the larger

the associated envelope of density and the larger are the

atomic displacements that are required to achieve an assign-

ment of ‘heterogeneity’ over ‘uncertainty’.

We suggest that the requirement that the electron-density

map corresponding to the PDB structure clearly shows alter-

native conformations in order to associate model variability

with true heterogeneity may be unduly conservative. For each

protein studied, the ensemble calculations demonstrate a

slight improvement in the Rfree value relative to the PDB

structure, which suggests that the ensemble models have

characteristics that are at least comparable in quality to the

highest quality single-conformer models (see Table 4).

Moreover, the automated PLOP/CNS protocol for generating

ensemble models from high-quality single-conformer models

demonstrates reasonably good agreement with the location

and extent of side-chain variability in the manually curated

high-resolution calmodulin PDB model 1exr. It should also be

noted that while local errors can still be present even when the

global Rfree measure is improved, the lack of multiple density

envelopes for variable residues in some cases reflects limita-

tions in the maps themselves. It is well known that the model

can bias the features of the electron density and it is not

unreasonable to expect that different combinations of maps

and phases could reveal alternative conformations. The

construction of simulated-annealing OMIT maps would be

one way to explore these effects, but we have not pursued this.

The identification of signatures leading to correct inter-

pretations of the physical underpinnings of modeled structural

variability would benefit the crystallographic community as

well as all those relying on structures to develop scientific

hypotheses. It is therefore important to undertake further

work to investigate general methods to reliably distinguish

between positional uncertainty and conformational hetero-

geneity.
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4.3. Utility of explicit representation of structural variability
In protein crystallography it is standard procedure to

represent the conformation of a protein as a single structure,

unless there is strong evidence in the electron-density maps

for the inclusion of alternative conformations in the model.

However, as pointed out by Furnham et al. (2006), this

convention unfortunately gives little indication of either the

accuracy or the conformational heterogeneity in the crystal

structure. These authors suggest that an ensemble of models

would be a more suitable representation of a protein and that

the range of structures in the ensemble represents the range of

structures that should be considered by any user of the

structural information. Until the recent application of torsion-

angle sampling to the protein structure-refinement problem, it

has been difficult to generate in an automated way a diverse

ensemble of high-quality models which fit the X-ray data well.

With programs such as RAPPER and PLOP now available, it

is much easier to generate an ensemble of models to represent

a protein structure and to explore the advantages of an

ensemble representation of the structure.

One motivation for modeling structural variability is to

explore the relationship between protein flexibility and

biological function. Conformational variability at binding

sites, hinge regions and at interfaces between domains often

has functional relevance and this knowledge can be important

for subsequent modeling research and experimental design

(Gutteridge & Thornton, 2005; Gerstein & Echols, 2004;

Rajamani et al., 2004; Karplus et al., 2005). A single-conformer

representation of a macromolecular X-ray crystal structure

reflects the dominant state of the system. However, this is only

a partial picture that overlooks the true structural hetero-

geneity of the system, as well as the uncertainty in the atomic

coordinates. Crystallographic models based on conforma-

tional ensembles (Gros et al., 1990; Wilson & Brunger, 2000;

Schiffer & Hermans, 2003), such as those explored in this

study, provide a representation of the underlying variability

within the macromolecular structure that can be used as an aid

to help understand the relationship between protein confor-

mational flexibility and mechanism. Ensembles can be used to

highlight the range of conformations that should be taken into

account in any subsequent analysis. For side chains displaying

physical heterogeneity, one can ensure that emergent

hypotheses are consistent with the presence of all high-quality

conformations. Conversely, ensembles can also be used to

derive estimates of model uncertainty, which should be

considered when mechanisms are proposed that are based on

the details of short-range atomic interactions. In addition,

ensemble representations of a macromolecule can provide a

structural rationale for interpreting unanticipated experi-

mental results that are difficult to rationalize using single-

conformer models.

The refinement of ensembles of single-conformer models

which individually and/or collectively fit the crystallographic

data well particularly benefit virtual screening and molecular-

docking applications. With minimal flexibility at the binding

site, rigid-body docking can succeed when softened potentials

describe the interactions between the subunits or when

alternative rotamer states within the binding pocket are

sampled. Protein–ligand and protein–protein docking simu-

lations demonstrate increased predictive power when they

allow flexibility of the subunits (Bonvin, 2006; Ehrlich et al.,

2005; Halperin et al., 2002; Sherman et al., 2006). Receptor

conformational flexibility can also be accounted for by using

multiple protein structures obtained in a variety of ways: from

NMR ensembles, from multiple X-ray crystallographic struc-

tures and from modeling. Distributions of conformations can

be used to select multiple discrete targets or to construct a

composite receptor target which is then used in docking

studies (Damm & Carlson, 2007; Huang & Zou, 2007). By

incorporating structural variability explicitly and docking

against an ensemble of structures, more robust virtual

screening protocols become possible and this may also lead to

improved protocols for modeling-induced fit effects.

5. Conclusions

Structural biology provides a molecular perspective for

understanding biological phenomena based on the analysis of

the three-dimensional structures of proteins, nucleic acids and

other macromolecules. The primary source of structural

information at the atomic level is crystallography. Even

though most practitioners in the field understand that a single

PDB structure represents some sort of average structure, the

atomic positions are almost sacred when observed in a

molecular viewer. In a recent letter, Furnham et al. (2006)

proposed that the representation of a macromolecular crystal

structure as an ensemble of models is a more suitable repre-

sentation, for which there is a precedent in the way NMR

structures are represented, and that such a representation can

improve our understanding of the relationship between

structure and function. Generating ensembles of models that

fit the X-ray data well provides a direct measure of the

structural variability resulting from a combination of factors

involving conformational heterogeneity and model uncer-

tainty. However, generating ensembles of high-quality models

which fit the X-ray data is a nontrivial task. Automated

refinement methods are needed to generate ensembles of

models and the most obvious approach, simulated-annealing

molecular dynamics, is not particularly well suited to the task.

With the application of torsion-angle sampling methods to

X-ray refinement such as those contained in the programs

RAPPER and PLOP, it becomes much easier to generate

ensembles of models which individually and together fit the

X-ray data well.

The automated protocol described here combines aggres-

sive local exploration of torsion-angle sampling with scoring

using a modern physics-based effective potential to generate

low-energy candidates that are then filtered by real-space

X-ray criteria (electron density) and minimized using a reci-

procal-space X-ray target function. This protocol generates

models that fit the X-ray data as well as or better than the

original deposited PDB structures for the five macromolecules

reported here which serve as test cases. The ensemble of

PLOP structures show significant variability relative to the
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PDB structure, with backbone r.m.s.d.s from 0.08 to 0.6 Å and

25–50% of side chains in alternate conformations. Using

HIV-1 protease and SUMO-conjugating enzyme as examples,

we demonstrated how the modeled structural variability

captured the variability that is observed in multiple crystal

structures and in NMR ensembles and, for calmodulin,

variability observed at high resolution which was modeled in

the structure submitted to the PDB by reporting multiple

occupancies.

An approximate approach based on ensemble refinement is

proposed to differentiate between the variability arising from

physical heterogeneity and that which reflects positional

uncertainty. From 25% to 50% of the variability that is

modeled by our protocol can be attributed to structural

heterogeneity associated with discrete conformers for which

the spread in conformer positions exceeds the positional

uncertainty as estimated by the atomic B factors. However, the

fraction of residues which exhibit variability and for which the

PDB-phased electron-density map clearly shows multiple

occupancies is generally smaller than 25%. We have also

shown that a more physically realistic description of the

effective potential in PLOP is able to generate higher quality

conformations compared with a standard potential commonly

used for X-ray structure refinement which excludes electro-

static interactions. Arguably, the role of the potential function

in generating high-quality conformations becomes even more

important when there are fewer experimental data and for

modeling multiple conformations with unequal population

distributions where the dominant conformer may mask minor

ones in the electron-density map.

In summary, the automated iterative strategy described in

this work based on torsion-angle sampling in combination with

filtering and optimization of the fit to the X-ray data is a

powerful tool by which multiple high-quality models may be

generated and refined in parallel. These models can provide

explicit representation of the structural variability that exists

within macromolecular complexes and may be more reliable

than a single-conformer model when used as aids to under-

stand enzyme mechanisms or molecular recognition or as

three-dimensional scaffolds in structure-based drug design.
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